Czech ACM Student Chapter Czech Technical University in Prague

Charles University in Prague Technical University of Ostrava
University of West Bohemia University of Zilina

CTU Open Contest 2021

The CTU Open 2021 theme revolves around life on Mars. It is a vast topic and indeed a
monumental branch on the entire tree of life which cannot be explored in just a few problems
in one contest, no matter how complex those problems may seem to be. We can only hope that
the contest problems will be neither too easy nor too difficult for you, as we did use neither too
little nor too much beer in their preparation, and we politely ask you to do the same when you
finish the contest and celebrate your achievements and maybe even a great victory.

Your programs can be written in C, C++, Java or Python programming languages. The choice
is yours but you will be fully responsible for the correctness and efficiency of your solutions. All
we need is the correct answer produced by your code in some appropriate time.

All programs will read text from the standard input only. The results must be written to the
standard output. You are not allowed to use any other files, communicate over network, or
create processes. Input and output formats are described in problem statements and must be
strictly followed. Values given on one line are separated by one space, if not specified otherwise.
Do not print anything more than required. Each printed text line (including the last one) should
be terminated by a newline character (“\n”), which is not considered to be a part of that line.

Good luck, thank you for coming to our contest, and see you again in 2022!

nadacni fond avast

\/ & etnetera

SKODA

> A

CGl

Ty

Merica

1100l platforma 1111
Il informadé¢nich nnniu
Il technologii nm1mnnl1l

Czech ACM Student Chapter Czech Technical University in Prague

Charles University in Prague Technical University of Ostrava
University of West Bohemia University of Zilina

CTU Open Contest 2021

Silver Star Stands Alone

alone.c, alone.cpp, Alone. java, alone.py

One of standard units of length used in Solar system distance measurements is one astronomical
unit, abbreviated as AU. It is also used in the following problem.

The exploration probe is being assembled on Mars and it will be launched soon. The probe
destination is an asteroid named Silver Star after its unexpectedly bright ultraviolet albedo.
The journey of the probe will be long, and it may visit some other asteroids on the way. The
set of candidate asteroids to be visited, including Silver Star, has been carefully chosen so
that they are on the path from Mars to Silver Star and the sequence of their distances from
Mars expressed in AU and arranged in ascending order, is the sequence of the first few prime
numbers: 2,3,5,7,11,... On the journey, not necessarily all asteroids between the launch site
and Silver Star have to be visited. On the other hand, the distance between two consecutive
visited asteroids can be at most 14 AU, otherwise the probe would not collect enough scientific
data. There are two rules, neither of which can be broken: First, the closest asteroid, which is
in distance 2 AU, will be visited, and second, Silver Star will be visited.

There are many possible trajectories of the probe dictated by the choice of particular asteroids to
be visited. Two trajectories are considered different if the sequences of visited asteroids in each
trajectory differ by at least one asteroid. Otherwise they are considered equal. Each trajectory
contains the launch site asteroid and Silver Star. The probe will be moving steadily towards
Silver Star, it will never turn back. The probe navigation team needs to evaluate the most
promising trajectories. For that aim, they first need to calculate the number of all mutually
different probe trajectories.

Input Specification

The input contains one line with one integer P (2 < P < 211), the distance of the Silver Star
from Mars expressed in AU. P is a prime number.

Output Specification

Print the number of different probe trajectories.

Sample Input 1 Output for Sample Input 1
7 4
Sample Input 2 Output for Sample Input 2

31 416

Czech ACM Student Chapter Czech Technical University in Prague

Charles University in Prague Technical University of Ostrava
University of West Bohemia University of Zilina

CTU Open Contest 2021

TomTom Cruise

cruise.c, cruise.cpp, Cruise. java, cruise.py

You intend to take a trip from your base to Ganymede. You have a spaceship which you will use
for the whole trip. It will take some fuel to get there, some fuel to traverse part of the moon,
and some fuel to get back to the base.

There are some points on Ganymede you can visit. The map of Ganymede is given as a graph
where the weight of each vertex is equal to the amount of fuel it will take to traverse between
the corresponding point and your base. The weight of each edge equals to the amount of fuel
it will take to traverse between vertices which are connected by the edge, in either direction.
In order for your trip to be reasonable, you do not want to visit any edge or any vertex twice.
However, you have to traverse at least one edge.

What is the least amount of fuel you will need to accomplish such a trip?

Input Specification

First line of the input contains two integers N and M, the number of vertices and edges, respec-
tively (1 < N < 10%,0 < M < min ((g), 2. 104)). Next line contains N integers vg, v1,...,VN_1
(1 < w; <10%), weights of respective vertices 0,1,..., N — 1. Each of the next M lines contains
three integers f;, t;, and w; (0 < fi,t; < N, 1 < w; < 105), the two vertices connected by the
edge and the edge weight, respectively.

Output Specification

Output the minimum amount of fuel you have to spend on your trip.

Sample Input 1 Output for Sample Input 1

21 29
45
01 20

Sample Input 2 Output for Sample Input 2

33 33
10 40 20
011
024
212

Czech ACM Student Chapter Czech Technical University in Prague

Charles University in Prague Technical University of Ostrava
University of West Bohemia University of Zilina

CTU Open Contest 2021

Mad Diamond

diamond.c, diamond. cpp, Diamond. java, diamond.py

Mars lacks global magnetic field. Advanced gadgets can detect weak local magnetic fields and
serve as compasses for navigation.

A compass of this kind depends of movement of a highly magnetized diamond crystal in an
intricate maze inside the gadget. The crystal is often called Mad Diamond because of the
apparent complexity of its movement.

A compass maze is built on a system of concentric rings located on a flat disk with a single
so-called base point on its perimeter. On each ring, there are located 360 so-called principal
points in regular distances from each other. The angle of a principal point is the angle between
two specific rays, measured in degrees. The first ray points from the maze center to the base
point, the second ray points from the center of the maze to the principal point. The angle of
the first principal point on a ring is 0°, the angle of the next principal point in the clockwise
direction is 1°, and so on.

The maze itself consists of circular arc segments and straight radial segments. A circular arc
segment is always completely embedded in one of the rings. It begins in a principal point and
it ends also in a principal point. Each radial segment connects two neighbour rings and it is
perpendicular to the tangents of the rings at the respective points of connection. Often, at least
one endpoint of a radial segment belongs to a circular arc segment too, but that is not a strict
necessity. Any two segments can intersect only at a principal point. No two segments overlap,
not even partially.

Before calibration of a compass is started, two points in the maze are given, a principal start
point and a principal end point. The diamond is located in the principal start point. The
diamond has to travel from the principal start point, move along the segments in the maze, and
finally stop at the principal end point.

During calibration, the compass is hanged vertically on a wall, with the base point initially
at the top of the compass. Calibration proceeds in phases. In a phase, the compass remains
fixed, and the diamond falls through the maze, from its previous position to the lowest currently
reachable point in the maze. The phase is terminated when the diamond stops. The diamond
may also remain still during a phase, if its position in the maze prevents it from movement.
Between each two consecutive phases, the compass is rotated clockwise or counterclockwise by
1°.

Most of the time, due to the maze shape, the diamond cannot move exactly vertically. At any

point of time, the vector of diamond movement can deviate from vertical vector by at most 89°.
Note that at the end of each phase the diamond is in some principal point.

When the diamond arrives at a principal point from which two segments continue currently
downwards, it always checks the radial segment. If the current vector of diamond movement
through the radial segment would deviate from the vertical by at most 45°, the diamond falls into
the segment and continues its movement down through it. Otherwise, the diamond continues
its present movement through the circular segment.

Input Specification

The first line contains a single number N (1 < N < 20), the number of rings in the maze.
Then, N pairs of lines follow. Each pair describes one ring, in the order from the center of the
maze (the rings are numbered 0, 1,... N — 1). The first line in a pair starts with number K, the
number of maze circular arc segments on the current ring. It is followed by K pairs of numbers
(X and Y') representing an arc starting in a principal point whose angle is X and ending in
principal point whose angle is Y. The second line in the pair contains integer L, the number of
radial segments leading from the current circle out to the next ring. This number is followed by
L values, the angles of principal points on which the radial segments are located.

Last two lines of input represent the principal start point and the principal end point, respec-
tively. Each point is described by the number of ring it lies on and the angle of the principal
point it coincides with.

Output Specification

Print the minimum number of compass rotations between the phases which bring the diamond
from the principal start point to the principal end point. The diamond must be standing still
in the principal end point at the end of the last phase. Print the string “Impossible” if the
diamond cannot be brought to the principal end point at the end of any phase.

Sample Input 1 Output for Sample Input 1

260
30 80 90 140
45 110
0 60 90 180
30
30 140

30
140

N OO, K, NDNDNDW

180
Sample input 1

Czech ACM Student Chapter Czech Technical University in Prague

Charles University in Prague Technical University of Ostrava
University of West Bohemia University of Zilina

CTU Open Contest 2021

Burizon Fort

fort.c, fort.cpp, Fort. java, fort.py

On Mars there is a huge complex of forts. Martians living in these forts are fond of eating
Burizons and get very grumpy if they run out of them. Therefore it’s quite common task to
transport Burizons among these forts when the supplies are running low somewhere.

The transportation of Burizons is not so simple because of all the space debris falling down on the
planet. If some space debris hits the transportation vehicle, not only the vehicle gets destroyed,
but even all the supplies transported. That’s why Martians can transport their Burizon supplies
only at very precisely timed moments.

Luckily, Martian scientists developed a way to predict practical times when no space debris will
be endangering the transport vehicles. For this matter Martians developed a Martian UNIX
timestamp, which is represented as a positive integer. Practical time for transportation is a
Martian UNIX timestamp m, such that each positive integer smaller than m can be represented
as a sum of distinct divisors of m.

As recognizing practical time for transport is not that easy for Martians, they will need you to
help them to figure out which of the given timestamps are practical ones.

Input Specification

The first line contains one integer T' (1 < 7' < 100), the number of timestamps to be checked.
Each of the next T lines consists of one integer m (1 < m < 10'2), the Martian UNIX timestamp.

Output Specification

Output T lines, each with either “Yes” or “No”, answering the question whether the i-th times-
tamp is practical.

Sample Input 1 Output for Sample Input 1
5 Yes
4 Yes
6 No
10 Yes
12 No

15

Czech ACM Student Chapter Czech Technical University in Prague

Charles University in Prague Technical University of Ostrava
University of West Bohemia University of Zilina

CTU Open Contest 2021

Terrace Hill

hill.c, hill.cpp, Hill.java, hill.py

All explored mountain terraces in Girotti hills in Charitum Montes on the southern Martian
hemisphere have a peculiar feature — their sizes are approximately equal, and they all lie on a
hypothetical straight line.

The flat surface of the terraces is ideal for future housing development. Unusual configuration of
the terraces allows for a daring engineering project which will connect some terraces by bridges.

Due to relative geological instability in the surrounding region, the surface of any two terraces
connected by a bridge has to be in the same height. Obviously, a bridge between two terraces
can be built only when the height of all terraces between the given two is less than the height
of the two terraces to be connected.

The engineers of the project want to know the maximum total length of all bridges that can
be built. To simplify the introductory calculations, the following assumptions are made. The
distance between two neighbour terraces is negligibly small, it is considered to be zero in all
cases. The width of a terrace is considered to be one length unit.

Input Specification
The first line contains an integer N (1 < N < 3-10°) the number of the terraces. The second

line contains N integers aq,as,...,ay (1 < a; < 106) where a; is the height of i-th terrace. The
heights are given in the order of terraces on the (hypothetical) line.

Output Specification

Print one integer — the maximum possible total length of all bridges.

Sample Input 1 Output for Sample Input 1
5 0

12331

Sample Input 2 Output for Sample Input 2
6 1

555323

Sample Input 3 Output for Sample Input 3
6 4

232123

Czech ACM Student Chapter Czech Technical University in Prague

Charles University in Prague Technical University of Ostrava
University of West Bohemia University of Zilina

CTU Open Contest 2021

Eidam-Sand Lair

lair.c, lair.cpp, Lair. java, lair.py

In your base you have dug through sand and rock to construct a deep pit with stairs and a lift.
The pit goes very deep into the ground where on various floors you leave equipment and on the
deepest levels you leave cheeses to age, particularly Eidam. You often take a stroll downstairs,
but wonder whether it is faster to go up to the surface by foot or take a lift for a part or all of
the trip.

You know the position and the speed of yourself and the lift. The surface floor is numbered 0,
positive numbers denote underground floors by their distance to the surface. You are alone on
the Mars so only you will use the lift. Also, it takes (you and lift) almost no time to start and
stop moving so you will neglect these. When the lift is called to multiple floors, it moves to
them in the same order in which it was called. The lift is not very special — once you enter it,
you may order it to go to an arbitrary floor. In such case, any previous calls must be processed
first.

Input Specification

The first input line contains a single integer 7' (1 < T < 10%), the number of test cases. Next
T lines contain one test case each. Each test case is composed of four integers: Y),, L,, Y, L
where 0 <Y),, L, < 10” are the initial floors of you and the lift, and 0 < Y;, Ly < 10° are the
times it takes you and of the lift to move by one floor, respectively.

Output Specification

For each test case, print a single integer — the minimum time it takes you to move from your
initial floor to the 0-th floor.

Sample Input 1 Output for Sample Input 1
2 20

2 20 10 2 40

10 20 10 2

Example: Sample Input 1 contains two test cases. In the first one, you will rather walk to 0-th
floor than to wait for the lift which is 18 floors away. In the second test case, an example of the
fastest way is when you call the lift and walk 1 floor upstairs in the meantime, then you call the
lift to 9-th underground floor and wait for the lift which you then take to the 0-th floor.

Czech ACM Student Chapter Czech Technical University in Prague

Charles University in Prague Technical University of Ostrava
University of West Bohemia University of Zilina

CTU Open Contest 2021

Organ-free Man

organ.c, organ.cpp, Organ. java, organ.py

Every so often, a shipment of universal robots comes from Earth to Mars in order to help you with
routine colonization tasks. The robots are called Organ-free Men (precisely OFMv5001.41.912)
and each one of them is identified by a unique serial number, which is a positive integer.

To prevent space theft, OFMs are transported from Earth to Mars in a locked state and have to
be first unlocked by a special password. The password to unlock an OFM is based on its serial
number and a function f(z). The function f(z) is defined as follows:

If 0 <x <9, then f(x) =z!, and if x > 9, then f(x) = (z mod 10)! + f(|x/10]). The brackets
| | denote the floor value of a number (e.g. [2.43] = 2). Exclamation mark denotes the factorial,
ie,z!l=1x2x---xxforxz>0andO0! =1.

To unlock an OFM with a serial number g, you need to input smallest such non-negative integer
x, so that f(z) =y holds.

Will you manage to unlock all robots that were shipped to you?

Input Specification

The input consists of one integer y (1 <y < 10?), the serial number of a particular OFM.

Output Specification

Output a single non-negative integer z, the password to unlock the particular OFM.

Sample Input 1 Output for Sample Input 1
3 12
Sample Input 2 Output for Sample Input 2

20 2333

Czech ACM Student Chapter Czech Technical University in Prague

Charles University in Prague Technical University of Ostrava
University of West Bohemia University of Zilina

CTU Open Contest 2021

Bread Pit

pit.c, pit.cpp, Pit. java, pit.py

New breeds of underground bacteria help in terraforming Mars. The bacteria feed mainly on
regular bread loafs which are baked in huge quantities on the Mars surface and subsequently
dropped into a specially constructed pit. To distribute the bread evenly in the subsurface, the
pit consists of nearly vertical tunnels arranged in a tree-like structure. Each tunnel ends either in
a cave filled with bacterial colonies or in a gate which connects into one or more other downward
tunnels. The gates are mechanized and each of them keeps open only one downward tunnel at a
time. When a loaf falls through a gate into a downward tunnel, the gate closes the tunnel and
opens another one, to which it is connected, for the next arriving loaf. Opening the downward
tunnels works in a cyclic fashion: When a gate closes the last downward tunnel it again opens
the one which was open first. The order of open downward tunnels in each gate is fixed. At
most one of the gates is on the surface. All loafs falling through at least one tunnel also fall
through this topmost gate. The exception to the described scheme is the situation when the
topmost gate is completely closed for maintenace, all tunnels become inaccessible and the loafs
remain at the surface. In this scenario, for formal reasons, the surface is considered to be a cave
and simutaneously the only node in the whole pit.

When the system started operating, before any bread loaf was deposited in it, the first downward
tunnel in each gate was open.

Both caves and gates are commonly denoted as nodes, each node is labeled by a unique integer.

Determine which cave did each bread loaf fall into, as they were subsequently dropped, one after
another, into the pit.

Input Specification

The first input line contains two integers N, Q (1 < N,Q < 3-10°), the number of all nodes
(gates and caves) in the pit and the number of bread loafs dropped into the pit. The nodes
are labeled by integers 0,1,..., N — 1, the surface gate node is labeled by 0. The second line
contains N — 1 integers. The value of i-th integer on the line is the label of the predecessor of
node i. The predecessor of a node is the closest gate from which a falling loaf arrives to node
i. The second input line also encodes the order of open downward tunnels in each gate. When
value X appears on j-th and k-th positions and j < k, the tunnel connecting X to j opens
before the tunnel connecting X to k opens.

Output Specification

Print @ lines. The i-th line should contain the label of the cave that received the i-th loaf
dropped into the pit.

Sample Input 1

55
0011

Sample Input 2

7 10
000222

Output for Sample Input 1

W NN W

Output for Sample Input 2

= W ok, WO, WD -

Czech ACM Student Chapter Czech Technical University in Prague

Charles University in Prague Technical University of Ostrava
University of West Bohemia University of Zilina

CTU Open Contest 2021

Cyanide Rivers

rivers.c, rivers.cpp, Rivers. java, rivers.py

Cyanide rivers flowing out from Martian south polar ice cap are quite dangerous due to their
toxic contents and any activity in their close proximity is often extremely time consuming.

A row of communication towers has been built in the area, before the rivers even appeared after
Martian global warming events.

Some of the towers are now standing directly in a river, some remain standing outside, on the
river shores or on islands in the rivers. The first and the last tower in the row stand on river
shores.

All towers are to be officially certified for the next operation period in the present difficult
conditions.

The towers which are standing on the shore or on an island can be certified immediately. The
access to the towers in rivers is hazardous and requires a lot of caution. The certification process
of a tower standing in a river takes one whole day. Moreover, a tower standing in a river can
be certified only if at least one of its immediate neighbour towers has been certified at least
one day earlier. Fortunately, the certification process can be performed independently on each
tower, thus it is possible to certify more than one tower in a day.

The certification process has to be completed as soon as possible.

Input Specification

The input consists of one line containing an odd binary number with up to 300 000 digits and
with no leading zeros. Each digit represents one tower. Towers standing in a river are represented

by 0’s, remaining towers are represented by 1’s. The order of the digits is the same as the order
of towers in the row.

Output Specification

Print minimum number of whole days in which all towers can be certified.

Sample Input 1 Output for Sample Input 1
10100110101 1
Sample Input 2 Output for Sample Input 2

10000010010001 3

Czech ACM Student Chapter Czech Technical University in Prague

Charles University in Prague Technical University of Ostrava
University of West Bohemia University of Zilina

CTU Open Contest 2021

Screamers in the Storm

SCreamers.cC, sCcreamers.cpp, Screamers. java, Screamers.py

On Mars, though its atmosphere is very thin, winds can blow with unexpected force. The effect
can grow even stronger in narrow and deep canyons close to the equator. The floor of one of
these canyons is extremely flat and it is used for transport because its steep walls provide partial
shielding from cosmic radiation. Over the time, sand has accumulated in the canyon. It is blown
by the wind into sizeable sand dunes which obstruct the transport. The dunes form one long
string of dunes stretched along the canyon floor.

The arrangement of the dunes is not stable. Raging sand storms often remodel the dunes into
a different string. Violent movement of sand masses in the storm produce an eerie sound for
which the dunes are known as ”Screamers in the storm”.

Detailed measurements of the dunes revealed that the height of adjacent dunes, expressed in
Martian meters, is always a small positive integer. Moreover, probably due to wind interference
effects in the canyon, the heights of two adjacent dunes are different, unless they are both 1.
In fact, the heights of two adjacent dunes are always relatively prime, that is, they share no
common factor bigger than 1.

To model the dunes behavior, the number of all possible configurations of the dunes in the string
has to be established.

Input Specification

The input contains one line with two integers K, N (1 < K <66,1 < N < 1018), the maximum
possible height of a dune and the number of dunes in the string of dunes.

Output Specification

Print the number of different strings of dunes. Output the result modulo 10 + 7.

Sample Input 1 Output for Sample Input 1
34 41
Sample Input 2 Output for Sample Input 2
2 4 8
Sample Input 3 Output for Sample Input 3

42 75097099101114 673977658

Czech ACM Student Chapter Czech Technical University in Prague

Charles University in Prague Technical University of Ostrava
University of West Bohemia University of Zilina

CTU Open Contest 2021

Tone Banks

tone.c, tone.cpp, Tone. java, tone.py

On Mars, the greatest Earth music hits of all time are stored in huge physical databases of
records. This will allow current and future Mars inhabitants to remind themselves of the culture
of the motherland, should they grow homesick. These databases are called Tone Banks, as they
store the songs tone by tone.

However, only just recently, it has been discovered the data format of the records might degrade
when exposed to cosmic radiation over long periods of time. Because of that, is it needed to
quickly convert the records from the currently used format to a new one.

The current data format consists of a 2D grid of Data Points. Each Data Point is of one of two
types, either a “#” or a “.” (similarly to Earth’s 1s and 0s). These two Data Point types are
said to be complementary to each other. Two Data Points are considered adjacent, if they share
an edge in the grid. This means a Data Point on coordinates (X,Y), that is, on X-th row and
Y-th column, is adjacent to Data Points on coordinates (X +1,Y), (X —1,Y), (X,Y + 1) and
(X,Y — 1) (within the grid range).

Data Points form so called Data Blobs, which are connected areas consisting of a particular
Data Point type. That means each Data Point of a Data Blob is reachable from every other
Data Point of the Data Blob via a sequence of steps through consecutively adjacent Data Points
of the same type.

On top of that, within the connected area of a Data Blob, there may be other Data Blobs
consisting of the complementary Data Point type. The containment may repeat indefinitely,
alternating Data Point types, until there is a Data Blob not containing any other Data Blob.
For a Data Blob, we call inner Data Blobs such blobs within its area, that are adjacent to at
least one Data Point of the Data Blob. Each Data Blob may contain 0 to 26 inner Data Blobs.
The number of inner Data Blobs contained in a Data Blob determine which tone, represented
as an English character, it encodes (1 Data Blob = a, 2 Data Blobs = b, ..., 26 Data Blobs
= z). A Data Blob not containing any other Data Blobs doesn’t represent any tone/character;
it represents an empty string. A Data Blob must encompass its inner Data Blobs fully within
itself. That means each Data Point (X,Y") of its inner Data Blobs must not be adjacent with
Data Points of the same type of its, possibly hypothetical, outer Data Blob (the Data Blob in
which it is contained). These points must not only not be adjacent according to the definition
above, but they must not be adjacent even over a diagonal to points (X +1,Y +1), (X+1,Y 1),
(X —-1,Y+1)and (X —1,Y — 1). Note that different inner Data Blobs of a single Data Blob
may be adjacent over a diagonal. See images below for examples.

Each stored song consists of a sequence of tones, and thus it may be represented as a word
consisting of English letters. A song is decoded from a record by the following algorithm. For
simplicity we consider that beyond the boundaries of the grid there is an infinite Data Blob
of type “.”. In this Data Blob, there is always a single Data Blob of type “#”. We start by
decoding this Data Blob. The word represented by a Data Blob is a concatenation of the letter
representing the Data Blob and all words represented by inner Data Blobs contained within
it. The concatenation happens consecutively by the lexicographical ordering of the coordinates

[###]2 #] [##[#]#]#]
VWH|# |- | H|# VWH|H#| - | #|#

2| # # | H#|# 2| # # #

s\ # | #| - | H#|# s|# | FH| - | F#|#

W H#NHF|H#HH#|H o\ H#NHF|H#H|HF|H#

X vy X vy

3 correct inner “.” Data Blobs Incorrect inner “#” Data Blob

(X,Y) of Data Points of the inner Data Blobs. That is, from two Data Blobs, we first concatenate
the word representing a Data Blob with a Data Point with the least row number, or in the case
of equality of row numbers, the least column number.

The new data format adheres to the very same rules, only it encodes the reverse of the word
encoded by the old format. Can you safely transform all the songs to the new format?

Input Specification

On the input there are two integers N and M (1 < N, M < 100), representing the number of
rows and the number of columns in the grid of the old data format, respectively. Next N lines

follow, each containing M characters of type either “#” or “.”. The grid encodes a nonempty
word in accordance to the format described above.

Output Specification

Output two integers K and L (1 < K, L < 3000), the number of rows and the number of columns
of the grid for the new data format, respectively. After that, output K lines with L characters

each, of type either “#” or “.”. The grid must encode the reverse of the word encoded by the
input.

Sample Input 1 Output for Sample Input 1
7T 33

HiHHHH# H#it#

#.o.... # #.o#

#.o.... # H#it#

#.o.... #

#.o.... #

#.o.... #

HiHHHHH

The first Sample Input encodes word ”a”, therefore the answer encodes also word ”a”.

Sample Input 2 Output for Sample Input 2

8 29 14 33
HURHHBHHHBRHH R AR AR ARHRAFHF RS SRR R R R R
R HHE. ..o # HEHHHEHHH SRR R R R
HOoHOHEH. WL R BB BB L. L H#HHHH
HOEOHE. L OBESHR. R LH O HEEEE SRR R R
#.oO0H#. L. #H....o.L L. HES H O BB H L CHEREHE . R HH R
HEHHHBHHHBSHHASHRARHRES L # OB OH. RS R HEE HHEEHE
HEHHHE. o oL HEHHHSE O HEEE S HEERE L H L HHE HH R
HUEHHHBHHHBHHHASHHAFH B HBASHE HESHE SHRERHRS . HiH . HHH HHBHHS
30222 HUHHH BRI H L H RS
HEHHH .o ##H . HH#HHH
HE#HH. oL #.OH# . HHBHHS
HEHHH ..o H#H . HHERHH
HUESHHBHHHESE oL H##HHH

HU#HH B AR B R B HRASH R A H B R HRRH S

The second Sample Input encodes word ”dabba”, therefore the answer encodes word ”abbad”.

Czech ACM Student Chapter Czech Technical University in Prague

Charles University in Prague Technical University of Ostrava
University of West Bohemia University of Zilina

CTU Open Contest 2021

Win Diesel

win.c, win.cpp, Win. java, win.py

Exploring cave systems on Mars is an easy procedure which was pre-planned on Earth. Each
cave system contains several cave rooms which are pairwise disconnected. As the cave rooms are
not accessible from the surface, you were given a digging rig so that you are able to dig channels
between some of them.

The soil is not uniform and running the digging rig is extremely diesel intensive. To save diesel
you need to excavate the minimum number of channels so that every cave is accessible from the
surface through the channels. At the same time, the resulting system should be connected in a
way so that the number of channels you need to pass to get from the surface to any particular
cave is minimized.

You ran a scan over the whole cave system and now you know the danger level of each cave
room. The scan also shows which pairs of cave rooms, or which cave room and surface, are
separated by soil that can be dug through to create a channel. Let the distance of a cave room
be the minimum possible number of channels that need to be traversed to reach the room from
the surface, if all the possible channels were dug.

Due to safety reasons, the procedure prescribes that in the process of digging, the closest (least
distant) cave rooms must be made accessible before any more distant cave rooms are made
accessible. If this is not uniquely determining the next room to be made accessible, then the
safest (least dangerous) room should be chosen from the candidates. If this does not uniquely
determine the channel that needs to be dug, then out of already accessible starting locations the
safest one has to be chosen.

Discovering the rooms in the given order forces you to traverse through the dug channels multiple
times. The machine you use to move the digging rig also drinks diesel, although much less than
the digging rig. You wonder, what is the amount of diesel that you will need to do this job —
this is proportional to the number of channels that will need to be traversed, starting from 0
and counting until all the channels are dug.

Input Specification

The first line contains two integers N and M (1 < N < 2. 1057 0<M<2. 105) the number of
cave rooms (including surface) and the number of possible cave channels, respectively. Surface
is denoted by 0 and the cave rooms are denoted by integers from 1 to N — 1 and are ordered by
increasing danger level. Each of the next M lines contains two integers, representing two cave
rooms or a cave room and surface, which are separated by soil soft enough so that it can be dug
through to create a connecting channel.

Output Specification
Print a single integer — the total number of channel traversals you need to perform to make

the whole cave system accessible according to the prescribed procedure.

Sample Input 1 Output for Sample Input 1
10

B W NN, OO
O P W NP, O

Sample Input 2 Output for Sample Input 2

54 4
01
12
23
3 4

Sample Input 3 Output for Sample Input 3
7

N O O OO,
Wb PP OODNDNRELO

